etd@IISc Collection:http://etd.iisc.ernet.in/2005/342018-07-20T09:56:27Z2018-07-20T09:56:27ZWorkspace Analysis Of The Stewart Platform ManipulatorPradeep, Rhttp://etd.iisc.ernet.in/2005/21772018-01-09T06:10:20Z2013-07-31T18:30:00ZTitle: Workspace Analysis Of The Stewart Platform Manipulator
Authors: Pradeep, R2013-07-31T18:30:00ZWear And Seizure Of Aluminium-Silicon Alloys In Dry Sliding Against SteelReddy, A Somihttp://etd.iisc.ernet.in/2005/16272018-01-09T06:20:24Z2012-02-28T18:30:00ZTitle: Wear And Seizure Of Aluminium-Silicon Alloys In Dry Sliding Against Steel
Authors: Reddy, A Somi2012-02-28T18:30:00ZViscous Vortex Method Simulations of Stall Flutter of an Isolated Airfoil at Low Reynolds NumbersKumar, Vijayhttp://etd.iisc.ernet.in/2005/28142018-01-09T06:55:48Z2017-11-26T18:30:00ZTitle: Viscous Vortex Method Simulations of Stall Flutter of an Isolated Airfoil at Low Reynolds Numbers
Authors: Kumar, Vijay
Abstract: The flow field and forces on an isolated oscillating NACA 0012 airfoil in a uniform flow is studied using viscous vortex particle method. The simulations are carried out at very low chord (c) based Reynolds number (Re=1000), motivated by the current interest in development of Micro Air Vehicles (MAV). The airfoil is forced to oscillate in both heave and pitch at different normalized oscillation frequencies (f), which is represented by the non-dimensional reduced frequency fc/U).( From the unsteady loading on the airfoil, the net energy transfer to the airfoil is calculated to determine the propensity for the airfoil to undergo self-induced oscillations or flutter at these very low Reynolds numbers. The simulations are carried out using a viscous vortex particle method
that utilizes discrete vortex elements to represent the vorticity in the flow field. After validation of the code against test cases in the literature, simulations are first carried out for the stationary airfoil at different angles of attack, which shows the stall characteristics
of the airfoil at this very low Reynolds numbers.
For the airfoil oscillating in heave, the airfoil is forced to oscillate at different reduced frequencies at a large angle of attack in the stall regime. The unsteady loading on the blade is obtained at different reduced frequencies. This is used to calculate the net energy transfer to the airfoil from the flow, which is found to be negative in all cases studied. This implies that stall flutter or self-induced oscillations are not possible under the given heave conditions. The wake vorticity dynamics is presented for the different reduced frequencies, which show that the leading edge vortex dynamics is progressively
more complex as the reduced frequency is increased from small values. For the airfoil oscillating in pitch, the airfoil is forced to oscillate about a large mean angle of attack corresponding to the stall regime. The unsteady moment on the blade is obtained at different reduced frequencies, and this is used to calculate the net energy transfer to the airfoil from the flow, which is found to be positive in all cases studied. This implies that stall flutter or self-induced oscillations are possible in the pitch mode, unlike in the heave case. The wake vorticity dynamics for this case is found to be relatively simple compared to that in heave. The results of the present simulations are broadly in agreement with earlier stall flutter studies at higher Reynolds numbers that show that stall flutter does not occur in the heave mode, but can occur in the pitch mode. The main difference in the present very low Reynolds number case appears to be the broader extent of the excitation region in the pitch mode compared to large Re cases studied earlier.
region in the pitch mode compared to large Re cases studied earlier.2017-11-26T18:30:00ZVibrational Energy Harvesting : Design, Performance and Scaling AnalysisSriramdas, Rammohanhttp://etd.iisc.ernet.in/2005/38142018-07-12T05:45:57Z2018-07-11T18:30:00ZTitle: Vibrational Energy Harvesting : Design, Performance and Scaling Analysis
Authors: Sriramdas, Rammohan
Abstract: Low-power requirements of contemporary sensing technology attract research on alternate power sources that can replace batteries. Energy harvesters function as power sources for sensors and other low-power devices by transducing the ambient energy into usable electrical form. Energy harvesters absorbing the ambient vibrations that have potential to deliver uninterrupted power to sensing nodes installed in remote and vibration rich environments motivate the research in vibrational energy harvesting. Piezoelectric bimorphs have been demonstrating a pre-eminence in converting the mechanical energy in ambient vibrations into electrical energy. Improving the performance of these harvesters is pivotal as the energy in ambient vibrations is innately low. The present work is organized in three major sections: firstly, audit of the energy available in a vibrating source and design for effective transfer of the energy to harvesters, secondly, design of vibration energy harvesters with a focus to enhance their performance, and lastly, identification of key performance metrics influencing conversion efficiencies and scaling analysis for MEMS harvesters.
Typical vibration levels in stationary installations such as surfaces of blowers and ducts, and in mobile platforms such as light and heavy transport vehicles, are determined by measuring the acceleration signal. The frequency content in the signal is determined from the Fast Fourier Transform. A method of determining the energy associated with the vibrating source and the associated power using power spectral density of the signal is proposed. Power requirements of typical sensing nodes are listed with an intent to determine the adequacy of energy harvesting. Effective transfer of energy from a given vibration source is addressed through the concept of dynamic vibration absorption, which is a passive technique for suppressing unintended vibrations. Optimal absorption of energy from a vibration source entails the determination of absorber parameters such as resonant frequency and damping. We propose an iterative method to obtain these parameters for a generic case of large number of identical vibration absorbers resembling harvesters by minimizing the total energy absorbed by the system. The proposed method is verified by analysing the response of a set of cantilever absorber beams placed on a vibrating cantilever plate. We find, using our method, the values of the absorber mass, resonant frequency and damping of the absorber at which significant amount of energy supplied to the system flows into the absorber, a scenario which is favourable for energy harvesting. We emphasize through our work that monitoring energies in the system and optimizing their flow is both rational and vital for designing multiple harvesters that absorb energy from a given vibration source optimally.
Enhancing the performance of piezoelectric energy harvesters through a multilayer and, in particular, a multistep configuration is presented. Partial coverage of piezoelectric material in steps along the length of a cantilever beam results in a multistep piezoelectric energy harvester. We find that the power generated by a multistep beam is almost twice of that generated by a multilayer harvester made out of the same volume of polyviny-lidine fluoride (PVDF), further corroborated experimentally. Improvements observed in the power generated prove to be a boon for weakly coupled, low pro le, piezoelectric materials. Thus, in spite of the weak piezoelectric coupling observed in PVDF, its energy harvesting capability can be improved significantly by using it in a multistep piezoelectric beam configuration. Besides, the effect of piezoelectric step length and thickness in a piezoelectric unimorph harvester and performance metrics such as piezoelectric coupling factor and efficiency of conversion are presented.
Modeling of a hybrid energy harvester composed of piezoelectric and electromagnetic mechanisms of energy conversion motivated by the need to determine the contribution of each domain to the power generated by the harvester is presented, particularly, when multiple domains exist in a single harvester. Two exclusive schemes of energy transduction are represented using equivalent circuits, which allow modeling any additional
transduction scheme employed in the hybrid harvester with relative ease. Furthermore, a method of determining optimal loads in the respective domains using the equivalent circuit of the hybrid harvester is presented. Four different hybrid energy harvesters were fabricated and evaluated for their performance in comparison with that estimated from the proposed models. Additionally, scaling laws for hybrid energy harvesters are presented. The power developed by both piezoelectric and electromagnetic domains is observed to decrease with width and length cubed. Power indices and figures of merit in a hybrid harvester are proposed and are used to estimate the efficiencies of the four fabricated hybrid harvesters.
The important design parameters for micro scale harvesting are identified by performing scaling analysis on MEMS piezoelectric harvesters. Performance of energy harvesters is directly related to the harvester attributes, viz., size, material, and end-mass. Depending on the contribution from each attribute, the power developed by MEMS harvesters can vary widely. A novel method of delineating the power developed by a harvester using five exclusive factors representing scaling, composition, inertia, material, and power (SCIMP) factors is presented. Although the proposed method can be extended to bi-morph and multilayer harvesters, in the present work, we elucidate it by applying it to a MEMS unimorph. We also present a unique coupling factor that ensures maximum power factor in a harvester. As any tiny increment in the power generated would considerably improve the power densities of MEMS harvesters, we focus on enhancing the power developed by maximizing each of the five exclusive factors irrespective of material and size. Furthermore, we demonstrate the competence of the proposed method by applying it on nine different MEMS harvesters reported in the literature. Considering the close match between the reported and predicted performance, we emphasize that monitoring the proposed factors is sufficient to attain the best performance from a harvester.2018-07-11T18:30:00Z