etd@IISc Collection:
http://hdl.handle.net/2005/34
2014-09-26T03:59:21ZMulti-Phase Modeling Of Microporosity And Microstructures During Solidification Of Aluminum Alloys
http://hdl.handle.net/2005/2303
Title: Multi-Phase Modeling Of Microporosity And Microstructures During Solidification Of Aluminum Alloys
Authors: Karagadde, Shyamprasad
Abstract: Manufacturing of light-weight materials is associated with several types of casting defects during solidification. Porosity defects are common, especially in aluminum and its alloys, which initiate crack propagation and thereby cause drastic deterioration in the mechanical properties. These defects, classified as micro and macro defects (based on their sizes), are mainly governed by release of hydrogen into the liquid at the solid-liquid interface, which triggers the nucleation and growth of hydrogen bubbles in the melt. Subsequently, these bubbles interact with solidifying interfaces such as dendritic arms and eutectic fronts, leading to the formation of pores. Macroscopic defects in the form of voids are created due to solidification shrinkage.
The primary focus of the present work is to develop phenomenological models for the evolution of microporosity and microstructures during solidification. The issues outlined above typically occur in multi-phase environments comprising of solid, liquid and gaseous phases, and over a range of length and time scales. Any phenomenological prediction would, therefore, require a multi-phase-scale approach. Principles of volume averaging are applied to equations of conservation to obtain single-field formulations. These are then solved with appropriate interface tracking techniques such as Enthalpy, Level-set, Volume-of-fluid and Immersed-boundary methods. The framework is built up on a standard pressure based incompressible fluid flow solver (SIMPLER algorithm) and coupled modeling strategies are proposed to address the interfacial dynamics. A two-dimensional framework is considered with a fixed-grid Cartesian co-ordinate system. Scaling analyses are performed to bring out the relative effects of various competing parameters in order to obtain further insights into this complex phenomenon. The numerical results and scaling predictions are validated against experimental observations published in literature.
In literature, numerical predictions of microporosity mainly include criteria based models based on empirical relations and deterministic/stochastic models based on diffusion driven growth assuming spherical bubbles. The dynamic evolution of non-spherical bubble-metal interface in a three-phase system is yet to be captured. Moreover, several in-situ experiments have shown elongated bubble shapes during the engulfment phase, therefore a criterion to define the dependence on cooling rates and the resulting bubble morphology can possibly deliver further practical insights. We propose a numerical model for hydrogen bubble growth, its movement and subsequent engulfment by a solidifying front, combining the features of level-set and enthalpy methods for tracking bubble-metal and solid-liquid interfaces, respectively. The influx of hydrogen into heterogeneously nucleated bubbles results in growth of bubbles to sizes up to a few hundreds of microns. In the first part of this numerical study, a methodology based on the level-set approach is developed to simultaneously capture hydrogen bubble growth and movement in liquid aluminum. The solidification is first assumed to occur outside the micro-domain providing a specified hydrogen influx to the bubble-in-liquid system. The level-set equation is formulated in such a way as to account for simultaneous growth and movement of the bubble. The growth of a bubble with continuous and fixed hydrogen levels in the melt is studied.
The rates of growth of bubble-liquid and solidifying interfaces are compared using an order of magnitude analysis. This scaling analysis explains the thought experiment proposed in the literature, where difference in bubble shapes was attributed to the cooling rate. Moreover, it shows explicit dependence on bubble radius and cooling rate leading to a new criterion for bubble elongation proposed in this thesis. This also highlights the comparison between solidification and hydrogen diffusion time-scales which primarily govern the competitive growth behavior. The bubble-in-liquid model is coupled with microscopic enthalpy method to incorporate effects of solidification and study the interaction of solid-liquid and bubble-liquid interfaces. The phenomena of bubble engulfment and elongation are successfully captured by the proposed model. A parametric study is carried out to estimate the bubble elongation based on different initial bubble sizes and varying cooling rates encountered in typical sand, permanent mold and die casting processes.
Although simulation of microstructures has been extensively studied in the literature, very few models address the phenomena of simultaneous growth and movement of equiaxed dendrites. The presence of different flow environments and multiple dendrites are known to alter the position and shape of the dendrites. The proposed model combines the features of the following methods, namely, the Enthalpy method for modeling growth; the Immersed Boundary Method (IBM) for handling the rigid solid-liquid interfaces; and the Volume of Fluid (VOF) method for tracking the advection of the dendrite. The algorithm also performs explicit-implicit coupling between the techniques used. Validation with available literature is performed and dendrite growth in presence of rotational and buoyancy driven flow fields is studied. The expected transformation into globular microstructure in presence of stirring induced flows is successfully simulated. A simple order estimate for time required for stirring is performed which agrees with numerical predictions. In buoyancy driven environment of a settling dendrite, the arm tip speeds show expected higher velocity of the upstream tip compared to its counterpart. The model is extended to study thermal and hydrodynamic interactions between multiple dendrites with appropriate considerations for different orientations and velocities of the dendritic solid entities. The present model can be used for the prediction of grain sizes and shapes and to simulate morphological transformations due to different melt flow scenarios.
In the final part, the methodology presented for growth and engulfment of hydrogen bubbles is extended to study the phenomenon of diffusion driven bubble growth occurring in direct foaming of metals. The source of hydrogen is determined by the rate of decomposition of the blowing agent. This is accounted for by a source term in the hydrogen species conservation equation, and growth rate of hydrogen bubbles is calculated on the basis of diffusive flux at the interface. The level-set method is used for tracking the bubble-liquid interface growth, and the macroscopic enthalpy model is used for obtaining heat transfer and solid front position. The model is validated with analytical solution by comparing the front position and the solidification time. The variation of foam density with a transient hydrogen generation source is studied and qualitatively compared with results reported in literature. The modeling strategies proposed in this work are generic and therefore have potential in simulating a variety of complex multi-phase problems.2014-04-22T18:30:00Z1-D And 3-D Analysis Of Multi-Port Muffler Configurations With Emphasis On Elliptical Cylindrical Chamber
http://hdl.handle.net/2005/1931
Title: 1-D And 3-D Analysis Of Multi-Port Muffler Configurations With Emphasis On Elliptical Cylindrical Chamber
Authors: Mimani, Akhilesh
Abstract: The flow-reversal elliptical cylindrical end chamber mufflers of short length are used often in the modern day automotive exhaust systems. The conventional 1-D axial plane wave theory is not able to predict their acoustical attenuation performance in view of the fact that the chamber length is not enough for the evanescent 3-D modes generated at the junctions to decay sufficiently for frequencies below the cut-off frequency. Also, due to the large area expansion ratio at the inlet, the first few higher order modes get cut on even in the low frequency regime. This necessitates a 3-D FEM or 3-D BEM analysis, which is cumbersome and time consuming. Therefore, an ingenious 1-D transverse plane wave theory is developed by considering plane wave propagation along the major-axis of the elliptical section, whereby a 2-port axially short elliptical and circular chamber muffler is characterized by means of the transfer matrix [T] or impedance matrix [Z]. Two different approaches are followed: (1) a numerical scheme such as the Matrizant approach, and (2) an analytical approach based upon the Frobenius series solution of the Webster’s equation governing the transverse plane wave propagation. The convective effects of mean flow are neglected; however the dissipative effects at the ports are taken into account. The TL predicted by this 1-D transverse plane wave analysis is compared with that obtained by means of the 3-D analytical approach and numerical (FEM/BEM) methods. An excellent agreement is observed between this simplified 1-D approach and the 3-D approaches at least up to the cut-on frequency of the (1, 1) even mode in the case of elliptical cylindrical chambers, or the (1, 0) mode in the case of circular cylindrical chambers, thereby validating this 1-D transverse plane wave theory. The acoustical attenuation characteristics of such short chamber mufflers for various configurations are discussed, qualitatively as well as quantitatively. Moreover, the Frobenius series solution enables one to obtain non-dimensional frequencies for determining the resonance peak and trough in the TL graph. The use of this theory is, however, limited to configurations in which both the ports are located along the major axis in the case of elliptical chambers and along the same diameter for circular chambers.
The method of cascading the [T] matrices of the 2-port elements cannot be used to analyze a network arrangement of 2-port elements owing to the non-unique direction of wave propagation in such a network of acoustic elements. Although, a few papers are found in the literature reporting the analysis of a network of 2-port acoustic elements, no work is seen on the analysis of a network of multi-port elements having more than two external ports. Therefore, a generalized algorithm is proposed for analyzing a general network arrangement of linear multi-port acoustic elements having N inlet ports and M outlet ports. Each of these multi-port elements constituting the network may be interconnected to each other in an arbitrary manner. By appropriate book-keeping of the equations obtained by the [Z] matrix characterizing each of the multi-port and 2-port elements along with the junction laws (which imply the equality of acoustic pressure and conservativeness of mass velocity at a multi-port junction), an overall connectivity matrix is obtained, whereupon a global [Z] matrix is obtained which characterizes the entire network. Generalized expressions are derived for the evaluation of acoustic performance evaluation parameters such as transmission loss (TL) and insertion loss (IL) for a multiple inlet and multiple outlet (MIMO) system. Some of the characteristic properties of a general multi-port element are also studied in this chapter. The 1-D axial and transverse plane wave analysis is used to characterize axially long and short chambers, respectively, in terms of the [Z] matrix. Different network arrangements of multi-port elements are constructed, wherein the TL performance of such MIMO networks obtained on the basis of either the 1-D axial or 1-D transverse plane wave theory are compared with 3-D FEA carried on a commercial software. The versatility of this algorithm is that it can deal with more than two external or terminal ports, i.e., one can have multiple inlets and outlets in a complicated acoustic network.
A generalized approach/algorithm is presented to characterize rigid wall reactive multi-port chamber mufflers of different geometries by means of a 3-D analytical formulation based upon the modal expansion and the uniform piston-driven model. The geometries analyzed here are rectangular plenum chambers, circular cylindrical chamber mufflers with and without a pass tube, elliptical cylindrical chamber mufflers, spherical and hemispherical chambers, conical chamber mufflers with and without a co-axial pass tube and sectoral cylindrical chamber mufflers of circular and elliptical cross-section as well as sectoral conical chamber mufflers. Computer codes or subroutines have been developed wherein by choosing appropriate mode functions in the generalized pressure response function, one can characterize a multi-port chamber muffler of any of the aforementioned separable geometrical shapes in terms of the [Z] matrix, subsequent to which the TL performance of these chambers is evaluated in terms of the scattering matrix [S] parameters by making use of the relations between [Z] and [S] matrices derived earlier. Interestingly, the [Z] matrix approach combined with the uniform piston-driven model is indeed ideally suited for the 3-D analytical formulation inasmuch as regardless of the number of ports, one deals with only one area discontinuity at a time, thereby making the analysis convenient for a multi-port muffler configuration with arbitrary location of ports.
The TL characteristics of SISO chambers corresponding to each of the aforementioned geometries (especially the elliptical cylindrical chamber) are analyzed in detail with respect to the effect of chamber dimensions (chamber length and transverse dimensions), and relative angular and axial location of ports. Furthermore, the analysis of SIDO (i.e., single inlet and double outlet) chamber mufflers is given special consideration. In particular, we examine
(1) the effect of additional outlet port (second outlet port),
(2) variation in the relative angular or axial location of the additional or second outlet port (keeping
the location of the inlet port and the outlet ports of the original SISO chamber to be constant) and (3) the effect of interchanging the location of the inlet and outlet ports
on the TL performance of these mufflers. Thus, design guidelines are developed for the optimal location of the inlet and outlet ports keeping in mind the broadband attenuation characteristics for a single inlet and multiple outlet (SIMO) system.
The non-dimensional limits up to which a flow-reversal elliptical (or circular) cylindrical end chamber having an end-inlet and end-outlet configuration is acoustically short (so that the 1-D transverse plane wave theory is applicable) and the limits beyond which it is acoustically long (so that the 1-D axial plane wave theory is applicable) is determined in terms of the ratio or equivalently, in terms of the ratio. Towards this end, two different configurations of the elliptical cylindrical chamber are considered, namely,
(1) End-Offset Inlet (located along the major-axis of the ellipse) and End-Centered Outlet
(2) End-Offset Inlet and End-Offset Outlet (both the ports located on the major-axis of the
ellipse and at equal offset distance from the center).
The former configuration is analyzed using 3-D FEA simulations (on SYSNOISE) while the 3-D analytical uniform piston-driven model is used to analyze the latter configuration. The existence of the higher order evanescent modes in the axially long reversal chamber at low frequency (before the cut-on frequency of the (1, 1) even mode or (1, 0) mode) causes a shift in the resonance peak predicted by the 1-D axial plane wave theory and 3-D analytical approach. Thus, the 1-D axial plane wave analysis is corrected by introducing appropriate end correction due to the modified or effective length of the elliptical cylindrical chamber. An empirical formulae has been developed to obtain the average non-dimensional end correction for the aforementioned configurations as functions of the expansion ratio, (i.e., ), minor-axis to major-axis ratio, (i.e., ) and the center-offset distance ratio, (i.e., ). The intermediate limits between which the chamber is neither short nor long (acoustically) has also been obtained. Furthermore, an ingenious method (Quasi 1-D approach) of combining the 1-D transverse plane wave model with the 1-D axial plane wave model using the [Z] matrix is also proposed for the end-offset inlet and end-centered outlet configuration. A 3-D analytical procedure has also been developed which also enables one to determine the end-correction in axially long 2-port flow-reversal end chamber mufflers for different geometries such as rectangular, circular and elliptical cylindrical as well as conical chambers, a priori to the computation of TL. Using this novel analytical technique, we determine the end correction for arbitrary locations on the two end ports on the end face of an axially long flow-reversal end chamber. The applicability of this method is also demonstrated for determination of the end corrections for the 2-port circular cylindrical chamber configuration without and with a pass tube, elliptical cylindrical chambers as well as rectangular and conical chambers.2013-02-19T18:30:00Z1-D And 3-D Analysis Of Multi-Port Muffler Configurations With Emphasis On Elliptical Cylindrical Chamber
http://hdl.handle.net/2005/2218
Title: 1-D And 3-D Analysis Of Multi-Port Muffler Configurations With Emphasis On Elliptical Cylindrical Chamber
Authors: Mimani, Akhilesh
Abstract: The flow-reversal elliptical cylindrical end chamber mufflers of short length are used often in the modern day automotive exhaust systems. The conventional 1-D axial plane wave theory is not able to predict their acoustical attenuation performance in view of the fact that the chamber length is not enough for the evanescent 3-D modes generated at the junctions to decay sufficiently for frequencies below the cut-off frequency. Also, due to the large area expansion ratio at the inlet, the first few higher order modes get cut on even in the low frequency regime. This necessitates a 3-D FEM or 3-D BEM analysis, which is cumbersome and time consuming. Therefore, an ingenious 1-D transverse plane wave theory is developed by considering plane wave propagation along the major-axis of the elliptical section, whereby a 2-port axially short elliptical and circular chamber muffler is characterized by means of the transfer matrix [T] or impedance matrix [Z]. Two different approaches are followed: (1) a numerical scheme such as the Matrizant approach, and (2) an analytical approach based upon the Frobenius series solution of the Webster’s equation governing the transverse plane wave propagation. The convective effects of mean flow are neglected; however the dissipative effects at the ports are taken into account. The TL predicted by this 1-D transverse plane wave analysis is compared with that obtained by means of the 3-D analytical approach and numerical (FEM/BEM) methods. An excellent agreement is observed between this simplified 1-D approach and the 3-D approaches at least up to the cut-on frequency of the (1, 1) even mode in the case of elliptical cylindrical chambers, or the (1, 0) mode in the case of circular cylindrical chambers, thereby validating this 1-D transverse plane wave theory. The acoustical attenuation characteristics of such short chamber mufflers for various configurations are discussed, qualitatively as well as quantitatively. Moreover, the Frobenius series solution enables one to obtain non-dimensional frequencies for determining the resonance peak and trough in the TL graph. The use of this theory is, however, limited to configurations in which both the ports are located along the major axis in the case of elliptical chambers and along the same diameter for circular chambers. The method of cascading the [T] matrices of the 2-port elements cannot be used to analyze a network arrangement of 2-port elements owing to the non-unique direction of wave propagation in such a network of acoustic elements. Although, a few papers are found in the literature reporting the analysis of a network of 2-port acoustic elements, no work is seen on the analysis of a network of multi-port elements having more than two external ports. Therefore, a generalized algorithm is proposed for analyzing a general network arrangement of linear multi-port acoustic elements having N inlet ports and M outlet ports. Each of these multi-port elements constituting the network may be interconnected to each other in an arbitrary manner. By appropriate book-keeping of the equations obtained by the [Z] matrix characterizing each of the multi-port and 2-port elements along with the junction laws (which imply the equality of acoustic pressure and conservativeness of mass velocity at a multi-port junction), an overall connectivity matrix is obtained, whereupon a global [Z] matrix is obtained which characterizes the entire network. Generalized expressions are derived for the evaluation of acoustic performance evaluation parameters such as transmission loss (TL) and insertion loss (IL) for a multiple inlet and multiple outlet (MIMO) system. Some of the characteristic properties of a general multi-port element are also studied in this chapter. The 1-D axial and transverse plane wave analysis is used to characterize axially long and short chambers, respectively, in terms of the [Z] matrix. Different network arrangements of multi-port elements are constructed, wherein the TL performance of such MIMO networks obtained on the basis of either the 1-D axial or 1-D transverse plane wave theory are compared with 3-D FEA carried on a commercial software. The versatility of this algorithm is that it can deal with more than two external or terminal ports, i.e., one can have multiple inlets and outlets in a complicated acoustic network. A generalized approach/algorithm is presented to characterize rigid wall reactive multi-port chamber mufflers of different geometries by means of a 3-D analytical formulation based upon the modal expansion and the uniform piston-driven model. The geometries analyzed here are rectangular plenum chambers, circular cylindrical chamber mufflers with and without a pass tube, elliptical cylindrical chamber mufflers, spherical and hemispherical chambers, conical chamber mufflers with and without a co-axial pass tube and sectoral cylindrical chamber mufflers of circular and elliptical cross-section as well as sectoral conical chamber mufflers. Computer codes or subroutines have been developed wherein by choosing appropriate mode functions in the generalized pressure response function, one can characterize a multi-port chamber muffler of any of the aforementioned separable geometrical shapes in terms of the [Z] matrix, subsequent to which the TL performance of these chambers is evaluated in terms of the scattering matrix [S] parameters by making use of the relations between [Z] and [S] matrices derived earlier. Interestingly, the [Z] matrix approach combined with the uniform piston-driven model is indeed ideally suited for the 3-D analytical formulation inasmuch as regardless of the number of ports, one deals with only one area discontinuity at a time, thereby making the analysis convenient for a multi-port muffler configuration with arbitrary location of ports. The TL characteristics of SISO chambers corresponding to each of the aforementioned geometries (especially the elliptical cylindrical chamber) are analyzed in detail with respect to the effect of chamber dimensions (chamber length and transverse dimensions), and relative angular and axial location of ports. Furthermore, the analysis of SIDO (i.e., single inlet and double outlet) chamber mufflers is given special consideration. In particular, we examine (1) the effect of additional outlet port (second outlet port), (2) variation in the relative angular or axial location of the additional or second outlet port (keeping the location of the inlet port and the outlet ports of the original SISO chamber to be constant) and (3) the effect of interchanging the location of the inlet and outlet ports on the TL performance of these mufflers. Thus, design guidelines are developed for the optimal location of the inlet and outlet ports keeping in mind the broadband attenuation characteristics for a single inlet and multiple outlet (SIMO) system. The non-dimensional limits up to which a flow-reversal elliptical (or circular) cylindrical end chamber having an end-inlet and end-outlet configuration is acoustically short (so that the 1-D transverse plane wave theory is applicable) and the limits beyond which it is acoustically long (so that the 1-D axial plane wave theory is applicable) is determined in terms of the ratio or equivalently, in terms of the ratio. Towards this end, two different configurations of the elliptical cylindrical chamber are considered, namely, (1) End-Offset Inlet (located along the major-axis of the ellipse) and End-Centered Outlet (2) End-Offset Inlet and End-Offset Outlet (both the ports located on the major-axis of the ellipse and at equal offset distance from the center). The former configuration is analyzed using 3-D FEA simulations (on SYSNOISE) while the 3-D analytical uniform piston-driven model is used to analyze the latter configuration. The existence of the higher order evanescent modes in the axially long reversal chamber at low frequency (before the cut-on frequency of the (1, 1) even mode or (1, 0) mode) causes a shift in the resonance peak predicted by the 1-D axial plane wave theory and 3-D analytical approach. Thus, the 1-D axial plane wave analysis is corrected by introducing appropriate end correction due to the modified or effective length of the elliptical cylindrical chamber. An empirical formulae has been developed to obtain the average non-dimensional end correction for the aforementioned configurations as functions of the expansion ratio, (i.e., ), minor-axis to major-axis ratio, (i.e., ) and the center-offset distance ratio, (i.e., ). The intermediate limits between which the chamber is neither short nor long (acoustically) has also been obtained. Furthermore, an ingenious method (Quasi 1-D approach) of combining the 1-D transverse plane wave model with the 1-D axial plane wave model using the [Z] matrix is also proposed for the end-offset inlet and end-centered outlet configuration. A 3-D analytical procedure has also been developed which also enables one to determine the end-correction in axially long 2-port flow-reversal end chamber mufflers for different geometries such as rectangular, circular and elliptical cylindrical as well as conical chambers, a priori to the computation of TL. Using this novel analytical technique, we determine the end correction for arbitrary locations on the two end ports on the end face of an axially long flow-reversal end chamber. The applicability of this method is also demonstrated for determination of the end corrections for the 2-port circular cylindrical chamber configuration without and with a pass tube, elliptical cylindrical chambers as well as rectangular and conical chambers.2013-08-27T18:30:00ZThermodynamic Analysis And Simulation Of A Solar Thermal Power System
http://hdl.handle.net/2005/2313
Title: Thermodynamic Analysis And Simulation Of A Solar Thermal Power System
Authors: Harith, Akila
Abstract: Solar energy is a virtually inexhaustible energy resource, and thus, has great potential in helping meet many of our future energy requirements. Current technology used for solar energy conversion, however, is not cost effective. In addition, solar thermal power systems are also generally less efficient as compared to fossil fuel based thermal power plants. There is a large variety of systems for solar thermal power generation, each with certain advantages and disadvantages. A distinct advantage of solar thermal power generation systems is that they can be easily integrated with a storage system and/or with an auxiliary heating system (as in hybrid power systems) to provide stable and reliable power. Also, as the power block of a solar thermal plant resembles that of a conventional thermal power plant, most of the equipment and technology used is already well defined, and hence does not require major break through research for effective utilisation. Manufacturing of components, too, can be easily indigenized.
A solar collector field is generally used for solar thermal energy conversion. The field converts high grade radiation energy to low grade heat energy, which will inevitably involve energy losses as per the laws of thermodynamics. The 2nd law of thermodynamics requires that a certain amount of heat energy cannot be utilised and has to be rejected as waste heat. This limits the efficiency of solar thermal energy technology. However, in many situations, the waste heat can be effectively utilized to perform refrigeration and desalination using absorption or solid sorption systems, with technologies popularly known as “polygeneration”.
There is extensive research done in the area of solar collectors, including but not limiting to thermal analysis, testing of solar collectors, and economic analysis of solar collectors. Exergy and optimization analyses have also been done for certain solar collector configurations. Research on solar thermal power plants includes energy analysis at system level with certain configurations. Research containing analysis with insolation varying throughout the day is limited. Hence, there is scope for analysis incorporating diurnal variation of insolation for a solar thermal power system.
This thesis centres on the thermodynamic analysis at system level of a solar thermal power system using a concentrating solar collector field and a simple Rankine cycle power generation (with steam as the working fluid) for Indian conditions. The aim is to develop a tool for thermodynamic analysis of solar thermal power systems, with a generalised approach that can also be used with different solar collector types, different heat transfer fluids in the primary loop, and also different working fluids in the secondary loop.
This analysis emphasises the solar collector field and a basic sensible heat storage system, and investigates the various energy and exergy losses present. Comparisons have been made with and without a storage unit and resulting performance issues of solar thermal power plants have been studied. Differences between the system under consideration and commercially used thermal power plants have also been discussed, which brought out certain limitations of the technology currently in use. A solution from an optimization analysis has been utilized and modified for maximization of exergy generated at collector field.
The analysis has been done with models incorporating equations using the laws of thermodynamics. MATLAB has been used to program and simulate the models. Solar radiation data used is from NREL’s Indian Solar Resource Data, which is obtained using their SUNY model by interpreting satellite imagery.
The performance of the system has been analysed for Bangalore for four different days with different daylight durations, each day having certain differences in the incident solar radiation or insolation received. A particular solution of an optimization analysis has been modified using the simulation model developed and analysed with the objective of maximization of exergy generated at collector field.
It has been found that the performance of the solar thermal power system was largely dependent on the variation of incident solar radiation. The storage system provided a stableperformance for short duration interruptions of solar radiation occurred on Autumn Equinox (23-09-2002).The duration of the interruption was within the limits of storage unit capacity. The major disruption in insolation transpired on Summer Solstice (21-06-2002) caused a significantly large drop in the solar thermal system performance; practically the system ceased to function due to lack of energy resource. Hence, the use of an auxiliary heating system hasbeen considered desirable.
The absence of a storage unit has been shown to cause a significant loss in gross performance of the power system. The Rankine cycle turbine had many issues coping with a highly fluctuating energy input, and thus caused efficiency losses and even ceased power generation. A storage unit has been found to be ideal for steady power generation purposes. Some commercial configurations may lack a storage system, but they have been compensated by the auxiliary heating system to ensure stable power generation.
The optimization of the solar collector determines that optimal collector temperatures vary in accordance to the incident solar radiation. Hence, the collector fluid outlet temperature must not be fixed so as to handle varying insolation for optimal exergy extraction. The optimal temperatures determined for Bangalore are around 576 K which is close to the values obtained by the simulation of the solar thermal power system.
The tools for analysis and simulation of solar thermal power plants developed in this thesis is fairly generalised, as it can be adapted for various types of solar collectors and for different working fluids (other than steam), such as for Organic Rankine Cycle (ORC). The model can also be easily extended to other types of power cycles such as Brayton and Stirling cycles.2014-05-20T18:30:00Z