etd@IISc Collection:
http://hdl.handle.net/2005/41
Tue, 04 Aug 2015 22:12:00 GMT2015-08-04T22:12:00ZRigidity And Regularity Of Holomorphic Mappings
http://hdl.handle.net/2005/2447
Title: Rigidity And Regularity Of Holomorphic Mappings
Authors: Balakumar, G P
Abstract: We deal with two themes that are illustrative of the rigidity and regularity of holomorphic
mappings.
The first one concerns the regularity of continuous CR mappings between smooth pseudo convex, finite type hypersurfaces which is a well studied subject for it is linked with the problem of studying the boundary behaviour of proper holomorphic mappings between domains bounded by such hypersurfaces. More specifically, we study the regularity of Lipschitz CR mappings from an h-extendible(or semi-regular) hypersurface in Cn .Under various assumptions on the target hypersurface, it is shown that such mappings must be smooth. A rigidity result for proper holomorphic mappings from strongly pseudo convex domains is also proved.
The second theme dealt with, is the classification upto biholomorphic equivalence of model domains with abelian automorphism group in C3 .It is shown that every model domain i.e.,a hyperbolic rigid polynomial domainin C3 of finite type, with abelian automorphism group is equivalent to a domain that is balanced with respect to some weight.Wed, 15 Jul 2015 18:30:00 GMThttp://hdl.handle.net/2005/24472015-07-15T18:30:00ZRicci Flow And Isotropic Curvature
http://hdl.handle.net/2005/2376
Title: Ricci Flow And Isotropic Curvature
Authors: Gururaja, H A
Abstract: This thesis consists of two parts. In the first part, we study certain Ricci flow invariant nonnegative curvature conditions as given by B. Wilking. We begin by proving that any such nonnegative curvature implies nonnegative isotropic curvature in the Riemannian case and nonnegative orthogonal bisectional curvature in the K¨ahler case. For any closed AdSO(n,C) invariant subset S so(n, C) we consider the notion of positive curvature on S, which we call positive S- curvature. We show that the class of all such subsets can be naturally divided into two subclasses:
The first subclass consists of those sets S for which the following holds: If two Riemannian manifolds have positive S- curvature then their connected sum also admits a Riemannian metric of positive S- curvature.
The other subclass consists of those sets for which the normalized Ricci flow on a closed Riemannian manifold with positive S-curvature converges to a metric of constant positive sectional curvature.
In the second part of the thesis, we study the behavior of Ricci flow for a manifold having positive S - curvature, where S is in the first subclass. More specifically, we study the Ricci flow for a special class of metrics on Sp+1 x S1 , p ≥ 4, which have positive isotropic curvature.Tue, 02 Sep 2014 18:30:00 GMThttp://hdl.handle.net/2005/23762014-09-02T18:30:00ZFourier Analysis On Number Fields And The Global Zeta Functions
http://hdl.handle.net/2005/2355
Title: Fourier Analysis On Number Fields And The Global Zeta Functions
Authors: Fernandes, Jonathan
Abstract: The study of zeta functions is one of the primary aspects of modern number theory. Hecke was the first to prove that the Dedekind zeta function of any algebraic number field has an analytic continuation over the whole plane and satisfies a simple functional equation. He soon realized that his method would work, not only for Dedekind zeta functions and L–series, but also for a zeta function formed with a new type of ideal character which, for principal ideals depends not only on the residue class of the number(representing the principal ideal) modulo the conductor, but also on the position of the conjugates of the number in the complex field. He then showed that these “Hecke” zeta functions satisfied the same type of functional equation as the Dedekind zeta function, but with a much more complicated factor.
In his doctoral thesis, John Tate replaced the classical notion of zeta function, as a sum over integral ideals of a certain type of ideal character, by the integral over the idele group of a rather general weight function times an idele character which is trivial on field elements. He derived a Poisson Formula for general functions over the adeles, summed over the discrete subgroup of field elements. This was then used to give an analytic continuation for all of the generalized zeta functions and an elegant functional equation was established for them. The mention of the Poisson Summation Formula immediately reminds one of the Theta function and the proof of the functional equation for the Riemann zeta function. The two proofs share close analogues with the functional equation for the Theta function now replaced by the number theoretic Riemann–Roch Theorem. Translating the results back into classical terms one obtains the Hecke functional equation, together with an interpretation of the complicated factor in it as a product of certain local factors coming form the archimedean primes and the primes of the conductor.
This understanding of Tate’s results in the classical framework essentially boils down to constructing the generalized weight function and idele group characters which are trivial on field elements. This is facilitated by the understanding of the local zeta functions. We explicitly compute in both cases, the local and the global, illustrating the working of the ideas in a concrete setup. I have closely followed Tate’s original thesis in this exposition.Sun, 03 Aug 2014 18:30:00 GMThttp://hdl.handle.net/2005/23552014-08-03T18:30:00ZFunction Theory On Non-Compact Riemann Surfaces
http://hdl.handle.net/2005/2330
Title: Function Theory On Non-Compact Riemann Surfaces
Authors: Philip, Eliza
Abstract: The theory of Riemann surfaces is quite old, consequently it is well developed. Riemann surfaces originated in complex analysis as a means of dealing with the problem of multi-valued functions. Such multi-valued functions occur because the analytic continuation of a given holomorphic function element along different paths leads in general to different branches of that function. The theory splits in two parts; the compact and the non-compact case. The function theory developed on these cases are quite dissimilar. The main difficulty one encounters in the compact case is the scarcity of global holomorphic functions, which limits one’s study to meromorphic functions. This however is not an issue in non-compact Riemann surfaces, where one enjoys a vast variety of global holomorphic functions. While the function theory of compact Riemann surfaces is centered around the Riemann-Roch theorem, which essentially tells us how many linearly independent meromorphic functions there are having certain restrictions on their poles, the function theory developed on non-compact Riemann surface engages tools for approximation of functions on certain subsets by holomorphic maps on larger domains. The most powerful tool in this regard is the Runge’s approximation theorem. An intriguing application of this is the Gunning-Narasimhan theorem, which says that every connected open Riemann surface has an immersion into the complex plane. The main goal of this project is to prove Runge’s approximation theorem and illustrate its effectiveness in proving the Gunning-Narasimhan theorem. Finally we look at an analogue of Gunning-Narasimhan theorem in the case of a compact Riemann surface.Sun, 29 Jun 2014 18:30:00 GMThttp://hdl.handle.net/2005/23302014-06-29T18:30:00Z