etd@IISc Collection:
http://etd.iisc.ernet.in/2005/41
Sat, 10 Nov 2018 03:20:15 GMT2018-11-10T03:20:15ZCentral and Peripheral Correlates of Motor Planning
http://etd.iisc.ernet.in/2005/3092
Title: Central and Peripheral Correlates of Motor Planning
Authors: Rungta, Satya Prakash
Abstract: A hallmark of human behaviour is that we can either couple or decouple our thoughts, decision and motor plans from actions. Previous studies have reported evidence of gating of information between intention and action that can happen at different levels in the central nervous system (CNS) involving the motor cortex, subcortical structures such as the basal ganglia and even in the spinal cord. In my research I examine the extent of this gating and its modulation by task context. I will present results obtained by data collected from (a) neck muscles and neural recording from frontal eye field (FEF) in macaque monkeys and (b) putative motor units (MUs) from high density electrode arrays using surface EMG signals in human to delineate the type of information that leaks into muscles in the periphery when subjects are involved in preparing eye and hand movements, respectively, and its modulation by task context Overall, my results reveal that we can assess some aspects of central planning in the activity of motor units Further, the recruitment of these motor units depend on task context.Sat, 10 Feb 2018 18:30:00 GMThttp://etd.iisc.ernet.in/2005/30922018-02-10T18:30:00ZNovel Upwind and Central Schemes for Various Hyperbolic Systems
http://etd.iisc.ernet.in/2005/3564
Title: Novel Upwind and Central Schemes for Various Hyperbolic Systems
Authors: Garg, Naveen Kumar
Abstract: The class of hyperbolic conservation laws model the phenomena of non-linear wave propagation, including the presence and propagation of discontinuities and expansion waves. Such nonlinear systems can generate discontinuities in the so-lution even for smooth initial conditions. Presence of discontinuities results in break down of a solution in the classical sense and to show existence, weak for-mulation of a problem is required. Moreover, closed form solutions are di cult to obtain and in some cases such solutions are even unavailable. Thus, numerical algorithms play an important role in solving such systems. There are several dis-cretization techniques to solve hyperbolic systems numerically and Finite Volume Method (FVM) is one of such important frameworks. Numerical algorithms based on FVM are broadly classi ed into two categories, central discretization methods and upwind discretization methods. Various upwind and central discretization methods developed so far di er widely in terms of robustness, accuracy and ef-ciency and an ideal scheme with all these characteristics is yet to emerge. In this thesis, novel upwind and central schemes are formulated for various hyper-bolic systems, with the aim of maintaining right balance between accuracy and robustness.
This thesis is divided into two parts. First part consists of the formulation of upwind methods to simulate genuine weakly hyperbolic (GWH) systems. Such systems do not possess full set of linearly independent (LI) eigenvectors and some of the examples include pressureless gas dynamics system, modi ed Burgers' sys-tem and further modi ed Burgers' system. The main challenge while formulating an upwind solver for GWH systems, using the concept of Flux Di erence Splitting (FDS), is to recover full set of LI eigenvectors, which is done through addition of generalized eigenvectors using the theory of Jordan Canonical Forms. Once the defective set of LI eigenvectors are completed, a novel (FDS-J) solver is for-mulated in such a manner that it is independent of generalized eigenvectors, as they are not unique. FDS-J solver is capable of capturing various shocks such as
-shocks, 0-shocks and 00-shocks accurately. In this thesis, the FDS-J schemes are proposed for those GWH systems each of which have one particular repeated eigenvalue with arithmetic multiplicity (AM) greater than one. Moreover, each
ux Jacobian matrix corresponding to such systems is similar to a unique Jordan matrix.
After the successful treatment of genuine weakly hyperbolic systems, this strategy is further applied to those weakly hyperbolic subsystems which result on employ-ing various convection-pressure splittings to the Euler ux function. For example, Toro-Vazquez (TV) splitting and Zha-Bilgen (ZB) type splitting approaches to split the Euler ux function yield genuine weakly hyperbolic convective parts and strict hyperbolic pressure parts. Moreover, the ux Jacobian of each convective part is similar to a Jordan matrix with at least two lower order Jordan blocks. Based on the lines of FDS-J scheme, we develop two numerical schemes for Eu-ler equations using TV splitting and ZB type splitting. Both the new ZBS-FDS and TVS-FDS schemes are tested on various 1-D shock tube problems and out of two, contact capturing ZBS-FDS scheme is extended to 2-dimensional Euler system where it is tested successfully on various test cases including many shock instability problems.
Second part of the thesis is associated with the development of simple, robust and accurate central solvers for systems of hyperbolic conservation laws. The idea of splitting schemes together with the notion of FDS is not easily extendable to systems such as shallow water equations. Thus, a novel central solver Convection Isolated Discontinuity Recognizing Algorithm (CIDRA) is formulated for shallow water equations. As the name suggests, the convective ux is isolated from the total ux in such a way that other ux, in present case other ux represents celerity part, must possess non-zero eigenvalue contribution. FVM framework is applied to each part separately and ux equivalence principle is used to x the coe cient of numerical di usion. CIDRA for SWE is computed on various 1-D and 2-D benchmark problems and extended to Euler systems e ortlessly. As a further improvement, a scalar di usion based algorithm CIDRA-1 is designed for
v
Euler systems. The scalar di usion coe cient depends on that particular part of the Rankine-Hugoniot (R-H) condition which involves total energy of the system as a direct contribution. This algorithm is applied to a variety of shock tube test cases including a class of low density ow problems and also to various 2-D test problems successfully.
viSun, 20 May 2018 18:30:00 GMThttp://etd.iisc.ernet.in/2005/35642018-05-20T18:30:00ZStabilization Schemes for Convection Dominated Scalar Problems with Different Time Discretizations in Time dependent Domains
http://etd.iisc.ernet.in/2005/3574
Title: Stabilization Schemes for Convection Dominated Scalar Problems with Different Time Discretizations in Time dependent Domains
Authors: Srivastava, Shweta
Abstract: Problems governed by partial differential equations (PDEs) in deformable domains, t Rd; d = 2; 3; are of fundamental importance in science and engineering. They are of particular relevance in the design of many engineering systems e.g., aircrafts and bridges as well as to the analysis of several biological phenomena e.g., blood ow in arteries. However, developing numerical scheme for such problems is still very challenging even when the deformation of the boundary of domain is prescribed a priori. Possibility of excessive mesh distortion is one of the major challenge when solving such problems with numerical methods using boundary tted meshes. The arbitrary Lagrangian- Eulerian (ALE) approach is a way to overcome this difficulty. Numerical simulations of convection-dominated problems have for long been the subject to many researchers. Galerkin formulations, which yield the best approximations for differential equations with high diffusivity, tend to induce spurious oscillations in the numerical solution of convection dominated equations. Though such spurious oscillations can be avoided by adaptive meshing, which is computationally very expensive on ne grids. Alternatively, stabilization methods can be used to suppress the spurious oscillations.
In this work, the considered equation is designed within the framework of ALE formulation. In the first part, Streamline Upwind Petrov-Galerkin (SUPG) finite element method with conservative ALE formulation is proposed. Further, the first order backward Euler and the second order Crank-Nicolson methods are used for the temporal discretization. It is shown that the stability of the semi-discrete (continuous in time) ALE-SUPG equation is independent of the mesh velocity, whereas the stability of the fully discrete problem is unconditionally stable for implicit Euler method and is only conditionally stable for Crank-Nicolson time discretization. Numerical results are presented to support the stability estimates and to show the influence of the SUPG stabilization parameter in a time-dependent domain.
In the second part of this work, SUPG stabilization method with non-conservative ALE formulation is proposed. The implicit Euler, Crank-Nicolson and backward difference methods are used for the temporal discretization. At the discrete level in time, the ALE map influences the stability of the corresponding discrete scheme with different time discretizations, and it leads to schemes where conservative and non-conservative formulations are no longer equivalent. The stability of the fully discrete scheme, irrespective of the temporal discretization, is only conditionally stable. It is observed from numerical results that the Crank-Nicolson scheme induces high oscillations in the numerical solution compare to the implicit Euler and the backward difference time discretiza-tions. Moreover, the backward difference scheme is more sensitive to the stabilization parameter k than the other time discretizations. Further, the difference between the solutions obtained with the conservative and non-conservative ALE forms is significant when the deformation of domain is large, whereas it is negligible in domains with small deformation.
Finally, the local projection stabilization (LPS) and the higher order dG time stepping scheme are studied for convection dominated problems. The analysis is based on the quadrature formula for approximating the integrals in time. We considered the exact integration in time, which is impractical to implement and the Radau quadrature in time, which can be used in practice. The stability and error estimates are shown for the mathematical basis of considered numerical scheme with both time integration methods. The numerical analysis reveals that the proposed stabilized scheme with exact integration in time is unconditionally stable, whereas Radau quadrature in time is conditionally stable with time-step restriction depending on the ALE map. The theoretical estimates are illustrated with appropriate numerical examples with distinct features. The second order dG(1) time discretization is unconditionally stable while Crank-Nicolson gives the conditional stable estimates only. The convergence order for dG(1) is two which supports the error estimate.Sun, 20 May 2018 18:30:00 GMThttp://etd.iisc.ernet.in/2005/35742018-05-20T18:30:00ZThe Space of Metric Measure Spaces
http://etd.iisc.ernet.in/2005/3588
Title: The Space of Metric Measure Spaces
Authors: Maitra, Sayantan
Abstract: This thesis is broadly divided in two parts. In the first part we give a survey of various distances between metric spaces, namely the uniform distance, Lipschitz distance, Hausdor distance and the Gramoz Hausdor distance. Here we talk about only the most basic of their properties and give a few illustrative examples. As we wish to study collections of metric measure spaces, which are triples (X; d; m) consisting of a complete separable metric space (X; d) and a Boral probability measure m on X, there are discussions about some distances between them. Among the three that we discuss, the transportation and distortion distances were introduced by Sturm. The later, denoted by 2, on the space X2 of all metric measure spaces having finite L2-size is the focus of the second part of this thesis.
The second part is an exposition based on the work done by Sturm. Here we prove a number of results on the analytic and geometric properties of (X2; 2). Beginning by noting that (X2; 2) is a non-complete space, we try to understand its completion. Towards this end, the notion of a gauged measure space is useful. These are triples (X; f; m) where X is a Polish space, m a Boral probability measure on X and f a function, also called a gauge, on X X that is symmetric and square integral with respect to the product measure m2. We show that,
Theorem 1. The completion of (X2; 2) consists of all gauged measure spaces where the gauges satisfy triangle inequality almost everywhere. We denote the space of all gauged measure spaces by Y. The space X2 can be embedded in Y and the transportation distance 2 extends easily from X2 to Y. These two spaces turn out to have similar geometric properties.
On both these spaces 2 is a strictly intrinsic metric; i.e. any two members in them can be joined by a shortest path. But more importantly, using a description of the geodesics in these spaces, the following result is proved.
Theorem 2. Both (X2; 2) and (Y; 2) have non-negative curvature in the sense of Alexandrov.Mon, 21 May 2018 18:30:00 GMThttp://etd.iisc.ernet.in/2005/35882018-05-21T18:30:00Z