IISc Logo    Title

etd AT Indian Institute of Science >
Division of Mechanical Sciences  >
Mechanical Engineering (mecheng) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2005/1059

Title: Experimental Investigation Of Rheocasting Using Linear Electromagnetic Stirring
Authors: Pramod kumar, *
Advisors: Dutta, Pradip
Srinivasan, K
Keywords: Rheocasting
Electromagnetic Stirring
Machine Engineering - Electromagnetics
Linear Electromagnetic Stirrer (LEMS)
Semisolid Forming (SSF)
Rheocasting Mould
Semi-Solid Forming
A356 Alloy
Aluminium Alloys
Submitted Date: Jan-2008
Series/Report no.: G22198
Abstract: In several applications of casting, dendritic microstructure is not desirable as it results in poor mechanical properties. Enhancing fluid flow in the mushy zone by stirring is one of the means to suppress this dendritic growth. Strong fluid flow detaches the dendrites formed at the solid-liquid interface and carries them into the mould to form slurry. When this slurry solidifies, the microstructure is characterized by globular, non-dendritic primary phase particles, separated and enclosed by a near-eutectic lower-melting secondary phase. This property represents a great potential for further processing in semisolid forming (SSF) by various techniques such as pressure die casting and forging. Among all currently available methods, linear electromagnetic (EM) stirring is considered as one of the most suitable routes for large scale production of semisolid feed stock. One of the biggest advantages of EM stirring is that the stirring intensity and direction can be modulated externally and in a non-intrusive manner. With this viewpoint, the primary objective of the present research is to investigate rheocasting using linear electromagnetic stirring. A systematic development of a linear electromagnetic stirrer (LEMS) is the subject of the first part of the thesis. The LEMS consists of a set of six primary coils displaced in space. These coils are excited by a three-phase power supply to produce an axially travelling magnetic field. The metal to be stirred is placed in the annular space of the stirrer. The travelling field induces secondary current in the molten metal. The current and magnetic fields interact to generate a net mechanical force in the metal, commonly termed as the Lorentz force. The molten metal is stirred under the influence of this force. Two prototype stirrers, one for low melting alloys and the other for aluminium alloys are developed. The stirrers are characterized by measuring forces on low melting point alloy and on solid aluminum cylinders placed inside the annular space of the stirrer. As an outcome of these tests, a non-intrusive method of detecting stirring of liquid metal is developed. The development of a rheocasting mould for the LEMS forms the second part of the work presented in the thesis. The mould design and cooling arrangement are such that solidification in the mould is primarily unidirectional. Heat from the solidifying metal is extracted at the bottom of the mould, so that the axisymmetric EM stirring effectively shears the dendrites formed at the solid-liquid interface. The outer surface of the mould is cooled with water or air exiting from 64 jets, each of 4 mm diameter. Such an arrangement provides a high heat transfer coefficient and a wide range of cooling rate in the metal ranging from 0.01 to 10 K/s. Temperature is measured at various depths in the solidifying melt and at other key locations in the mould to assess the various heat transfer mechanisms. The results from the rheocasting experiments using the above mould and LEMS are presented in the third and final part of the thesis. Such studies are required for understanding the solidification process in presence of electromagnetic stirring and for highlighting the important issues connecting solidification, fluid flow, dendrite fragmentation and the resulting microstructure. A series of experiments are performed with A356 (Al-7Si-0.3Mg) alloy. Experiments are conducted with various combinations of operating parameters, and the resulting microstructures and cooling curves at various locations are examined. The key process parameters are stirring current, cooling rate, pouring temperature, and stirring current frequency. The parametric studies also include the case without EM stirring in which liquid aluminium is poured into the rheocast mould without powering the LEMS. It is found that stirring at high currents produces non-dendritic microstructures at all locations of the billet. For lower currents, however, dendritic microstructures are observed in regions outside the zone of active stirring. Stirring also enhances heat loss from the exposed top surface, leading to solid front advancement from the top as well. Without EM stirring, microstructures are found to be dendritic everywhere. The percentage of primary α-Al phase and its number density are found to increase with stirring intensity. With a decrease in cooling rate with air as the coolant, the average grain size of primary α-Al phase increases. Excitation frequency is found to be an important parameter, with lower frequencies generating a more uniform force field distribution, and higher frequencies enhancing induction heating. At higher frequencies, the effect of higher induction heating results in the formation of larger and coarser primary phase grains. This phenomenon has led to the development of a one-step process for rheocasting and heat treatment of billets.
URI: http://hdl.handle.net/2005/1059
Appears in Collections:Mechanical Engineering (mecheng)

Files in This Item:

File Description SizeFormat
G22198.pdf7.19 MBAdobe PDFView/Open

Items in etd@IISc are protected by copyright, with all rights reserved, unless otherwise indicated.


etd@IISc is a joint service of NCSI & IISc Library ||
|| Powered by DSpace || Compliant to OAI-PMH V 2.0 and ETD-MS V 1.01