IISc Logo    Title

etd AT Indian Institute of Science >
Division of Electrical Sciences >
Electrical Communication Engineering (ece) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2005/123

Title: Methods for Blind Separation of Co-Channel BPSK Signals Arriving at an Antenna Array and Their Performance Analysis
Authors: Anand, K
Advisors: Reddy, V U
Submitted Date: Jul-1995
Publisher: Indian Institute of Science
Abstract: Capacity improvement of Wireless Communication Systems is a very important area of current research. The goal is to increase the number of users supported by the system per unit bandwidth allotted. One important way of achieving this improvement is to use multiple antennas backed by intelligent signal processing. In this thesis, we present methods for blind separation of co-channel BPSK signals arriving at an antenna array. These methods consist of two parts, Constellation Estimation and Assignment. We give two methods for constellation estimation, the Smallest Distance Clustering and the Maximum Likelihood Estimation. While the latter is theoretically sound,the former is Computationally simple and intuitively appealing. We show that the Maximum Likelihood Constellation Estimation is well approximated by the Smallest Distance Clustering Algorithm at high SNR. The Assignment Algorithm exploits the structure of the BPSK signals. We observe that both the methods for estimating the constellation vectors perform very well at high SNR and nearly attain Cramer-Rao bounds. Using this fact and noting that the Assignment Algorithm causes negligble error at high SNR, we derive an upper bound on the probability of bit error for the above methods at high SNR. This upper bound falls very rapidly with increasing SNR, showing that our constellation estimation-assignment approach is very efficient. Simulation results are given to demonstrate the usefulness of the bounds.
URI: http://hdl.handle.net/2005/123
Appears in Collections:Electrical Communication Engineering (ece)

Files in This Item:

File Description SizeFormat
methods95.pdf1.49 MBAdobe PDFView/Open

Items in etd@IISc are protected by copyright, with all rights reserved, unless otherwise indicated.

 

etd@IISc is a joint service of SERC & IISc Library ||
Feedback
|| Powered by DSpace || Compliant to OAI-PMH V 2.0 and ETD-MS V 1.01