IISc Logo    Title

etd AT Indian Institute of Science >
Division of Mechanical Sciences  >
Mechanical Engineering (mecheng) >

Please use this identifier to cite or link to this item: http://etd.iisc.ernet.in/2005/236

Title: Turbulent Mixed Convection
Authors: Ramesh Chandra, D S
Advisors: Arakeri, J H
Submitted Date: Apr-2000
Publisher: Indian Institute of Science
Abstract: Turbulent mixed convection is a complicated flow where the buoyancy and shear forces compete with each other in affecting the flow dynamics. This thesis deals with the near wall dynamics in a turbulent mixed convection flow over an isothermal horizontal heated plate. We distinguish between two types of mixed convection ; low-speed mixed convection (LSM) and high-speed mixed convection (HSM). In LSM the entire boundary layer, including the near-wall region, is dominated by buoyancy; in HSM the near-wall region, is dominated by shear and the outer region by buoyancy. We show that the value of the parameter (* = ^ determines whether the flow is LSM or HSM. Here yr is the friction length scale and L is the Monin-Obukhov length scale. In the present thesis we proposed a model for the near-wall dynamics in LSM. We assume the coherent structure near-wall for low-speed mixed convection to be streamwise aligned periodic array of laminar plumes and give a 2d model for the near wall dynamics, Here the equation to solve for the streamwise velocity is linear with the vertical and spanwise velocities given by the free convection model of Theerthan and Arakeri [1]. We determine the profiles of streamwise velocity, Reynolds shear stress and RMS of the fluctuations of the three components of velocity. From the model we obtain the scaling for wall shear stress rw as rw oc (UooAT*), where Uoo is the free-stream velocity and AT is the temperature difference between the free-stream and the horizontal surface.A similar scaling for rw was obtained in the experiments of Ingersoll [5] and by Narasimha et al [11] in the atmospheric boundary layer under low wind speed conditions. We also derive a formula for boundary layer thickness 5(x) which predicts the boundary layer growth for the combination free-stream velocity Uoo and AT in the low-speed mixed convection regime.
URI: http://etd.iisc.ernet.in/handle/2005/236
Appears in Collections:Mechanical Engineering (mecheng)

Files in This Item:

File Description SizeFormat
G16440.pdf7.31 MBAdobe PDFView/Open

Items in etd@IISc are protected by copyright, with all rights reserved, unless otherwise indicated.


etd@IISc is a joint service of SERC & IISc Library ||
|| Powered by DSpace || Compliant to OAI-PMH V 2.0 and ETD-MS V 1.01