IISc Logo    Title

etd AT Indian Institute of Science >
Division of Earth and Environmental Sciences >
Centre for Atmospheric and Oceanic Sciences (caos) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2005/2583

Title: Role Of Sea Surface Temperature Gradient In Intraseasonal Oscillation Of Convection In An Aquaplanet Model
Authors: Das, Surajit
Advisors: Sengupta, Debasis
Chakraborty, Arindam
Keywords: Atmospheric Intraseasonal Oscillations
Community Atmospheric Model (CAM)
Sea Surface Temperature (SST)
Convection (Meteorolgy)
Aquaplanet Model
Intra-seasonal Oscillations (ISO)
Atmospheric Tides
Madden-Julian Oscillations (MJO)
Convectively Coupled Equatorial Waves
Aqua-planet Model
Submitted Date: Sep-2012
Series/Report no.: G25439
Abstract: In this thesis we examine intra-seasonal oscillations (ISO) in the aqua-planet setup of the Community Atmospheric Model (CAM) version 5.1, mainly based on July and January climatological sea surface temperature (SST). We investigate mainly two questions -what should be the SST distribution for the existence of (a) northward moving ISO in summer, and (b) eastward moving MJO-like modes in winter. In the first part of the thesis we discuss the northward propagation. A series of experiments were performed with zonally symmetric and asymmetric SST distributions. The basic lower boundary condition is specified from zonally averaged observed July and January SST. The zonally symmetric July SST experiment produced an inter tropical convergence zone (ITCZ) on both sides of the equator. Poleward movement is not clear, and it is confined to the region between the double ITCZ. In July, the Bay of Bengal (BOB) and West Pacific SST is high compared to the rest of the northern tropics. When we impose a zonally asymmetric SST structure with warm SST spanning about 80 of longitude, the model shows a monsoon-like circulation, and some northward propagating convective events. Analysis of these events shows that two adjacent cells with cyclonic and anticyclonic vorticity are created over the warm SST anomaly and to the west. The propagation occurs due to the convective region drawn north in the convergence zone between these vortices. Zonally propagating Madden-Julian oscillations (MJO) are discussed in the second part of the thesis. All the experiments in this part are based on the zonally symmetric SST. The zonally symmetric January SST configuration gives an MJO-like mode, with zonal wave number 1 and a period of 40-90 days. The SST structure has a nearly meridionally symmetric structure, with local SST maxima on either side of the equator, and a small dip in the equatorial region. If we replace this dip with an SST maximum, the time-scale of MJO becomes significantly smaller (20-40 days). The implication is that an SST maximum in the equatorial region reduces the strength of MJO, and a flat SST profile in the equatorial region is required for more energetic of MJO. This result was tested and found to be valid in a series of further experiments.
Abstract file URL: http://etd.ncsi.iisc.ernet.in/abstracts/3357/G25439-Abs.pdf
URI: http://hdl.handle.net/2005/2583
Appears in Collections:Centre for Atmospheric and Oceanic Sciences (caos)

Files in This Item:

File Description SizeFormat
G25439.pdf16.81 MBAdobe PDFView/Open

Items in etd@IISc are protected by copyright, with all rights reserved, unless otherwise indicated.


etd@IISc is a joint service of SERC & IISc Library ||
|| Powered by DSpace || Compliant to OAI-PMH V 2.0 and ETD-MS V 1.01