IISc Logo    Title

etd AT Indian Institute of Science >
Division of Mechanical Sciences  >
Centre for Product Design and Manufacturing (cpdm) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2005/2634

Title: Prediction Of The Behaviors Of Hollow/Foam-Filled Axially Loaded Steel/Composite Hat Sections For Advanced Vehicle Crash Safety Design
Authors: Haorongbam, Bisheshwar
Advisors: Deb, Anindya
Keywords: Vehicle Safety Design
Computer Aided Engineering
Axial Impact Loading
Carbon Nanostructure
Carbon Nanomaterials
Vehicle Impact Safety
Hat Sections
Steel Hat Sections
Polyurethane Foam
PU-Foam
Submitted Date: Nov-2015
Series/Report no.: G26959
Abstract: Hat sections, single and double, made of steel are frequently encountered in automotive body structural components such as front rails, B-Pillar, and rockers of unitized-body cars. These thin-walled components can play a significant role in terms of crashworthiness and impact energy absorption, through a nonlinear phenomenon called as progressive dynamic buckling. As modern vehicle safety design relies heavily on computer-aided engineering, there is a great need for analysis-based predictions to yield close correlation with test results. Although hat sections subjected to axial loading have been studied widely in the past, there is scanty information in published literature on modeling procedures that can lead to robust prediction of test responses. In the current study, both single-hat and double-hat components made of mild steel are studied extensively experimentally and numerically to quantify statistical variations in test responses such as peak load, mean load and energy absorption, and formulate modeling conditions for capturing elasto-plastic material behavior, strain rate sensitivity, spot-welds, etc. that can lead to robust predictions of force-time and force-displacement histories as well as failure modes. In addition, keeping initial stages of vehicle design in mind, the effectiveness of soft computing techniques based on polynomial regression analysis, radial basis functions and artificial neural networks for quick assessment of the behaviors of steel hat sections has been demonstrated. The study is extended to double-hat sections subjected to eccentric impact loading which has not been previously reported. A lightweight enhancement of load carrying capacity of steel hat section components has been investigated with PU (polyurethane) foam-filled single and double hat sections, and subjecting the same to quasi-static and axial impact loading. Good predictions of load-displacement responses are again obtained and shortening of fold lengths vis-à-vis hollow sections is observed. Finally, the performance of hat sections made of glass fiber-reinforced composites is studied as a potential lightweight substitute to steel hat section components. The challenging task of numerical prediction of the behaviors of the composite hat sections has been undertaken using a consistent modeling and analysis procedure described earlier and by choosing an appropriate constitutive behavior available in the popular explicit contact-impact analysis solver, LS-DYNA.
Abstract file URL: http://etd.ncsi.iisc.ernet.in/abstracts/3429/G26959-Abs.pdf
URI: http://hdl.handle.net/2005/2634
Appears in Collections:Centre for Product Design and Manufacturing (cpdm)

Files in This Item:

File Description SizeFormat
G26959.pdf9.48 MBAdobe PDFView/Open

Items in etd@IISc are protected by copyright, with all rights reserved, unless otherwise indicated.

 

etd@IISc is a joint service of SERC & IISc Library ||
Feedback
|| Powered by DSpace || Compliant to OAI-PMH V 2.0 and ETD-MS V 1.01