IISc Logo    Title

etd AT Indian Institute of Science >
Division of Interdisciplinary Research >
Department of Computational and Data Sciences (cds) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2005/2699

Title: Similarity between Scalar Fields
Authors: Narayanan, Vidya
Advisors: Natarajan, Vijay
Keywords: Scalar Fields
Topological Data Analysis
Extremum Graphs
Complete Extremum Graphs
Scalar Field Theory
Distance Measures
Scalar Field
Computer Graphics
Computational Topology
Computational Geometry
Submitted Date: 2016
Series/Report no.: G27604
Abstract: Scientific phenomena are often studied through collections of related scalar fields such as data generated by simulation experiments that are parameter or time dependent . Exploration of such data requires robust measures to compare them in a feature aware and intuitive manner. Topological data analysis is a growing area that has had success in analyzing and visualizing scalar fields in a feature aware manner based on the topological features. Various data structures such as contour and merge trees, Morse-Smale complexes and extremum graphs have been developed to study scalar fields. The extremum graph is a topological data structure based on either the maxima or the minima of a scalar field. It preserves local geometrical structure by maintaining relative locations of extrema and their neighborhoods. It provides a suitable abstraction to study a collection of datasets where features are expressed by descending or ascending manifolds and their proximity is of importance. In this thesis, we design a measure to understand the similarity between scalar fields based on the extremum graph abstraction. We propose a topological structure called the complete extremum graph and define a distance measure on it that compares scalar fields in a feature aware manner. We design an algorithm for computing the distance and show its applications in analyzing time varying data such as understanding periodicity, feature correspondence and tracking, and identifying key frames.
Abstract file URL: http://etd.ncsi.iisc.ernet.in/abstracts/3521/G27604-Abs.pdf
URI: http://etd.iisc.ernet.in/handle/2005/2699
Appears in Collections:Department of Computational and Data Sciences (cds)

Files in This Item:

File Description SizeFormat
G27604.pdf21.61 MBAdobe PDFView/Open

Items in etd@IISc are protected by copyright, with all rights reserved, unless otherwise indicated.


etd@IISc is a joint service of SERC & IISc Library ||
|| Powered by DSpace || Compliant to OAI-PMH V 2.0 and ETD-MS V 1.01