IISc Logo    Title

etd AT Indian Institute of Science >
Division of Biological Sciences >
Molecular Reproduction, Development and Genetics (mrdg) >

Please use this identifier to cite or link to this item: http://etd.iisc.ernet.in/2005/2964

Title: Role of Areca Nut Mediated Epithelial-Mesenchymal Interaction and Involvement of JNK/ATF2/Jun/TGF-beta axis in Oral Submucous Fibrosis Etiopathology
Authors: Pant, Ila
Advisors: Kondaiah, P
Keywords: NK/ATF2/Jun/TGF-beta Axis
Areca Nut
Oral Submucous Fibrosis (OSF)
Oral Fibroblasts
Gingival Fibroblasts
Submitted Date: 2016
Series/Report no.: G27887
Abstract: Oral submucous fibrosis (OSF) is a debilitating irreversible fibrotic condition of the oral cavity. It is characterized by inflammation and ultimately results in trismus. Patients face difficulty in speaking, swallowing and chewing due to restricted mouth opening (trismus). This disease is also categorized as an oral premalignant disorder (OPMD). Recent reports cite a conversion rate of 10% from OSF to oral squamous cell carcinoma (OSCC). Epidemiological studies and case reports over the years have correlated the habit of chewing areca nut (Areca catechu) to the manifestation of OSF. It is a major cause of concern in the South and South East Asian parts of the world where areca nut is cultivated and routinely consumed. There are an estimated 700 million areca nut chewers around the globe with 0.5% of the population in the Indian subcontinent being affected by OSF due to this habit. Previous studies have reported differential gene expression profile and up regulation of the pro-fibrotic transforming growth factor-β (TGF-β) pathway in OSF. However, detailed molecular mechanisms for the pathogenesis of this disease are still unclear despite our knowledge about the etiological agent (areca nut) responsible for its progression. Therefore, to gain insights into the etiopathogeneses of OSF, following objectives were undertaken:  To study the gene expression changes induced by areca nut and pro-fibrotic cytokine TGF-β in primary fibroblast cells, and their implications in OSF.  To elucidate the mechanism of TGF-β signal activation in epithelial cells by areca nut. Fibroblast cells are the effectors in all fibrotic disorders. Therefore, it is essential to study the response of this cell type in fibrosis. With prior knowledge of the activation of TGF-β pathway in OSF and the etiological agent of this disease being areca nut; we wanted to study the differential gene response of fibroblasts to these two agents. For this purpose, human primary gingival fibroblasts (hGF) were used as a model system to study the global gene expression profile regulated by areca nut and/or TGF-β. hGF cells were treated with sub-cytotoxic dose of areca nut (5 µg/ml) with and without TGF-β (5 ng/ml) for 72 hours and microarray was performed. The results revealed 4666 genes being differentially regulated by areca nut in hGF cells while TGF-β regulated 1214 genes. Both of them together differentially regulated 5752 genes. 413 genes which were commonly regulated by areca nut and TGF-β were observed to have enhanced regulation with a combined treatment of areca nut, together with TGF-β. This result pointed towards the potential role of both areca nut and TGF-β in modulating fibroblast response. To further assess the role of areca nut in OSF manifestation, we first compared the transcriptome profile induced by it in epithelial cells with fibroblast cells. Areca nut was found to induce differential response in these two cell types which corroborates with the disease pathology wherein; epithelial atrophy is observed and conversely fibroblasts are proliferative. To extend these observations we compared the areca nut induced profile in epithelial cells with OSF differential profile and found that a majority of the genes regulated by areca nut which were common with OSF are regulated by TGF-β. Similarly, areca nut and TGF-β regulated profile in fibroblast cells overlapped significantly with OSF profile. Additionally, areca nut and TGF-β treatment positively enriched matrix associated and metabolic pathways among others which are reported to be differentially regulated in OSF. These observations also highlighted the importance of combined actions of areca nut and TGF-β in OSF manifestation. To test the physiological importance of combined actions of areca nut and TGF-β in the context of OSF; activation of fibroblasts by these treatments was assessed. Treatment of fibroblasts with areca nut and TGF-β enhanced the expression of myofibroblast markers αSMA and γSMA with a concomitant increase in the contractile property when compared to areca nut or TGF-β treatment alone. Further, we observed that areca nut did not regulate any of the TGF-β ligands or receptors in fibroblasts, whereas it induced TGF-β2 in epithelial cells. Therefore, this invoked a possible epithelial-mesenchymal interaction that may exist in OSF pathogenesis. To test this possibility in-vitro, epithelial cells were treated with areca nut and the secretome of these cells was put on hGF cells to study the regulation of fibrosis associated genes. This treatment enhanced the regulation of fibroblast activation markers (αSMA and γSMA) as compared to direct areca nut treatment. This increase in regulation was abrogated when induction of TGF-β2 was compromised in epithelial cells. Similar results were obtained for the regulation of other genes (TGM-2, THBS-1, EDN1, LOXL3, PLOD2, TMEPAI, TGFBI, CTGF, BMP1, LMIK1). Therefore, we concluded that TGF-β which is secreted in response to areca nut by epithelial cells influences fibroblasts in combination with areca nut to enhance fibrosis response. Furthermore, the secretome of untreated epithelial cells was found to down regulate the basal expression of fibrosis related genes in fibroblasts, invoking a role for epithelial secretome in regulating the fibrosis progression. Our data highlighted the importance of TGF-β’s influence on fibroblast response in OSF, but the mechanism for the regulation of this cytokine was not known. Areca nut did not induce TGF-β ligands in fibroblast as discussed above, but previous data from our group had reported areca nut mediated up regulation of TGF-β2 in epithelial cells. Therefore, we further elucidated the mechanistic details for this induction using immortalized keratinocytes (HaCaT and HPL1D) and correlated these in OSF tissues. The kinetics of the induction of TGF-β signaling by areca nut (5 µg/ml) in epithelial cells was established. Areca nut induced TGF-β2 transcript, protein and activated the canonical signaling (pSMAD2/3) at 2 hours post treatment, which persisted till 24 hours. The regulation of TGF-β2 mRNA at 2 hours was dependent on active transcription but was independent of protein translation whereas the activation of signaling (pSMAD2) required both transcription and translation at this time point. This warranted probing for the role of TβR-I in the activation of TGF-β signal by areca nut. A small molecule inhibitor was used to abrogate the kinase activity of TβR-I. Areca nut induced TGF-β2 mRNA at 2 hours even in the presence of TβR-I inhibitor whereas the induction was compromised at 24 hours although the activation of SMAD2 at both 2 and 24 hours was compromised in the presence of TβR-I. This result signified that induction of TGF-β signaling was dependent on the TβR-I activity at early and late time points, but the transcription of the ligand was independent of the receptor activity at early time point. These results indicated the activation of some other pathway by areca nut which could regulate the transcription of TGF-β2 and thereby activate TGF-β signaling in epithelial cells. To explore this possibility, a panel of pathway inhibitors was used and only JNK inhibitor compromised areca nut induced TGF-β2 mRNA and pSMAD2. The results were corroborated by transient knockdown of JNK1 and JNK2. Further, JNK was phosphorylated at 30 minutes to 2 hours by areca nut treatment on epithelial cells. This activation was found to be independent of TβR-I activity. In good correlation, activated JNK1/2 was also detected in OSF tissues and was not detectable in normal tissues. Since JNK activation was found to be a pre-requisite for areca nut induced TGF-β signal activation; we further explored the mechanism of JNK activation by areca nut itself. Areca nut mediated activation of JNK was found to be dependent on muscarinic acid receptor, Ca2+/CAMKII and ROS. Inhibition of these significantly compromised areca nut induced pJNK. In line with this, inhibition of muscarinic acid receptor activity, CAMKII and ROS also abrogated areca nut mediated induction of TGF-β2 mRNA and pSMAD2. The regulation of TGF-β signaling by areca nut in epithelial cells was dependent on transcription, and JNK activity was essential for this. We further sought to explore transcription factors which were regulated by JNK and therefore could possibly induce TGF-β2 promoter activity. ATF2 and c-Jun transcription factors were found to be induced at 30 minutes by areca nut and this up regulation also persisted till 24 hours. Further, activation of both ATF2 and c-Jun was dependent on JNK but independent of TβR-I activity. Moreover, areca nut treatment induced translocation of these phoshorylated transcription factors in the nucleus of epithelial cells. Additionally, pATF2 and p-c-Jun were enriched on TGF-β2 promoter after 2 hours of treatment by areca nut. To investigate the importance of this enrichment and regulation of TGF-β signal activation by areca nut, we transiently knocked down these proteins and studied the regulation of TGF-β2. Areca nut induced TGF-β2 mRNA and pSMAD2 was abrogated upon ATF2 and c-Jun knockdown, implicating JNK mediated activation of ATF2 and c-Jun in areca nut induced TGF- β signaling. To explore the significance of this mechanism in OSF, immunohistochemical staining for pATF2 and p-c-Jun was performed on OSF and normal tissues. Both the transcription factors were found in the nuclei of OSF tissues whereas their expression was not detected in normal tissues. This expression also correlated with the previously reported activation of SMAD2 in OSF tissues by our group. Hence, ATF2 and c-Jun were observed to be important in areca nut mediated TGF-β signaling in OSF. In conclusion, the work described in this thesis provides mechanistic details into OSF etiopathogenesis. Combined actions of areca nut and TGF-β induced a response in fibroblasts akin to OSF. Our results advocate a role for epithelial secreted factors in influencing fibroblast response in both normal and disease (OSF) conditions. Further, importance of TGF-β in OSF has been elucidated in terms of enhancing the fibroblast response to areca nut. We have also elucidated the mechanism for areca nut mediated activation of TGF-β signaling and have identified the contribution of JNK/ATF2/Jun axis in this process. This work can impact the management of oral submucous fibrosis by providing newer targets for treatment.
Abstract file URL: http://etd.ncsi.iisc.ernet.in/abstracts/3826/G27887-Abs.pdf
URI: http://etd.iisc.ernet.in/handle/2005/2964
Appears in Collections:Molecular Reproduction, Development and Genetics (mrdg)

Files in This Item:

File Description SizeFormat
G27887.pdf6.62 MBAdobe PDFView/Open

Items in etd@IISc are protected by copyright, with all rights reserved, unless otherwise indicated.


etd@IISc is a joint service of SERC & IISc Library ||
|| Powered by DSpace || Compliant to OAI-PMH V 2.0 and ETD-MS V 1.01