IISc Logo    Title

etd AT Indian Institute of Science >
Division of Electrical Sciences >
Electrical Communication Engineering (ece) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2005/323

Title: Design And Performance Analysis Of A New Family Of Wavelength/Time Codes For Fiber-Optic CDMA Networks
Authors: Shivaleela, E S
Advisors: Srinivas, T
Keywords: Code Division Multiple Access
Computer Networks
CDMA Networks
Wavelength/Time Multiple-Pulses-Per-Row Codes (W/T MPR)
Fiber Optic CDMA Networks - Codes
Fiber Optic Code-Division Multiple Access (FO-CDMA)
Time Encoder (TE)
Frequency Encoder (FE)
Fast Frequency Hopping Encoder (FFHE)
Passive Router
Orthogonal Codes
Submitted Date: Jul-2006
Abstract: Asynchronous multiplexing schemes are efficient than synchronous schemes, in a bursty traffic environment of multiple access local area network (LAN), as fixed bandwidth is not allocated among the users and there is no access delay. Fiber- Optic Code-Division Multiple Access (FO-CDMA) is one such asynchronous multiplexing scheme suitable for high speed LAN networks. While FO-CDMA offers potential benefits it also faces challenges in three diverse areas which are 1) coding algorithms and schemes 2) advanced encoding and decoding hardware and 3) network architecture. In this thesis, as a solution to the first challenge, we propose the design and construction of a new family of codes, wavelength/time multiple-pulses-per-row (W/T MPR) codes. These codes have good cardinality, spectral efficiency and minimal cross-correlation values. Performance analysis of the W/T MPR codes is carried out and found to be superior to other codes. In unipolar 1-D Optical Orthogonal Codes (OOCs) proposed by Salehi et al., the ratio of code length/code weight grows rapidly as the number of users is increased for a reasonable weight. Hence, for a given pulse width, the data rate decreases or in other words for a given data rate very narrow pulses have to be used, because of which dispersion effects will be dominant. To overcome the drawbacks of non-linear effects in large spread sequences of 1-D unipolar codes in FO-CDMA networks, several two-dimensional codes have been proposed. Wavelength-time (W/T) encoding of the two-dimensional codes is practical in FO-CDMA networks. W/T codes reported so far can be classified mainly into two types: 1) hybrid sequences, where one type of sequence is crossed with another to improve the cardinality and correlation properties and 2) matrix codes, 1-D sequences converted to 2-D codes or 2-D codes by construc- tion, to reduce the ’time’ spread of the sequences/codes. Prime-hop and eqc/prime W/T hybrid codes have been proposed where one type of sequence is crossed with another to improve the cardinality and correlation properties. Other constructions deal with conversion of 1-D sequences to 2-D codes either by using Chinese remainder theorem or folding GoLomb rulers. W/T single-pulse-per-row (W/T SPR) codes are 2-D codes constructed using algebraic method Addition Modulo Group operation. Motivation for this work: To design a family of 2-D codes which have the design choice of length of one dimension over the other, and also have better cardinality, spectral efficiency and also low cross-correlation values (thereby have low BER) than that of the reported unipolar 2-D codes. In this thesis, we describe the design principles of W/T MPR codes, for in- coherent FO-CDMA networks, which have good cardinality, spectral efficiency and minimal cross-correlation values. Another feature of the W/T MPR codes is that the aspect ratio can be varied by trade off between wavelength and temporal lengths. We lay down the necessary conditions to be satisfied by W/T MPR codes to have minimal correlation values of unity. We analytically prove the correlation results and also verify by simulation (of the codes) using Matlab software tool. We also discuss the physical implementation of the W/T MPR FO-CDMA network with optical encoding and decoding. We show analytically that when distinct 1-D OOCs of a family are used as the row vectors of a W/T MPR code, it will have off-peak autocorrelation equal to ‘1’. An expression for the upper bound on the cardinality of W/T MPR codes is derived. We also show that 1-D OOCs and W/T SPR codes are the limiting cases of W/T MPR codes. Starting with distinct 1-D OOCs, of a family, as row vectors, we propose a greedy algorithm, for the construction of W/T MPR codes and present the repre- sentations of the results. An entire W/T MPR code family, generated using greedy algorithm, is simulated for various number of interfering users. Performance analysis of the W/T MPR codes and their limiting cases is carried out for various parameter variations such as the dimensions of wavelength, time and weight of the code. We evaluate the performance in terms of BER, capacities of the networks, temporal lengths needed (to achieve a given BER). Multiple access interference (MAI) signal can be reduced, by using a bistable optical hard-limiter device in the W/T MPR code receiver, by eliminating those signal levels which exceed a certain preset level. Performance analysis of the W/T MPR codes and their limiting cases is studied for various parameter variations. For given wavelength × time dimensions, we compare various W/T codes, whose cardinalities are known, and show that W/T MPR family of codes have better cardinality and spectral efficiency than the other (reported) W/T codes. As W/T MPR codes are superior to other W/T codes in terms of cardinality, spectral efficiency, low peak cross-correlation values and at the same time have good performance, makes it a suitable coding scheme for incoherent FO-CDMA access networks.
URI: http://hdl.handle.net/2005/323
Appears in Collections:Electrical Communication Engineering (ece)

Files in This Item:

File Description SizeFormat
G20339.pdf736.69 kBAdobe PDFView/Open

Items in etd@IISc are protected by copyright, with all rights reserved, unless otherwise indicated.


etd@IISc is a joint service of NCSI & IISc Library ||
|| Powered by DSpace || Compliant to OAI-PMH V 2.0 and ETD-MS V 1.01