IISc Logo    Title

etd AT Indian Institute of Science >
Division of Mechanical Sciences  >
Mechanical Engineering (mecheng) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2005/634

Title: Effect Of Mould Filling On Evolution Of Mushy Zone And Macrosegregation During Solidification
Authors: Pathak, Nitin
Advisors: Dutta, Pradip
Keywords: Casting
Solidification - Modelling
Pure Metals - Solidification
Binary Alloy Solidification
Alloy Casting
Sand Casting
Mushy Zone
Mould Filling
Submitted Date: Feb-2009
Series/Report no.: G22964
Abstract: The primary focus of the present work is to model the entire casting process from filling stage to complete solidification. The model takes into consideration any phase change taking place during the filling process. An implicit volume of fluid (VOF) based algorithm has been employed for simulating free surface flows during the filling process and the model for solidification is based on a fixed-grid enthalpy-based control volume approach. Solidification modelling is coupled with VOF through User Defined Functions (UDF) developed in commercial fluid dynamics (CFD) code FLUENT 6.3.26. The developed model is applied for the simultaneous filling and solidification of pure metals and binary alloy systems to study the effects of filling process on the solidification characteristics, evolution of mushy zone and the final macrosegregation pattern in the casting. The numerical results of the present analysis are compared with the conventional analysis assuming the initial conditions to be a completely filled mould cavity with uniform temperature, solute concentration and quiescent melt inside the cavity. The effects of process parameters, namely the degree of superheat, cooling temperature and filling velocity etc. are also investigated. Results show significant differences on the evolution of mushy zone and macrosegregation between the present analysis and the conventional analysis. The application of present model to simulate three dimensional sand casting is also demonstrated. The three dimensional competetive effect of filling generated residual flow and the buoyancy-induced convective flow pattern cause significant difference in macrosegregation pattern in casting.
URI: http://hdl.handle.net/2005/634
Appears in Collections:Mechanical Engineering (mecheng)

Files in This Item:

File Description SizeFormat
G22964.pdf6.03 MBAdobe PDFView/Open

Items in etd@IISc are protected by copyright, with all rights reserved, unless otherwise indicated.

 

etd@IISc is a joint service of SERC & IISc Library ||
Feedback
|| Powered by DSpace || Compliant to OAI-PMH V 2.0 and ETD-MS V 1.01
Please not that the site address will change from etd.ncsi.iisc.ernet.in to etd.iisc.ernet.in