IISc Logo    Title

etd AT Indian Institute of Science >
Division of Electrical Sciences >
Electrical Engineering (ee) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2005/716

Title: No/Nox Removal In Diesel Engine Exhaust Under Different Energizations And Reactor Configurations
Authors: Kumar, Bijendra
Advisors: Rajanikanth, B S
Keywords: Diesel Engine - Exhaust
Nitric Oxide
Electric Discharge Plasma Technique
Air Pollution - India
Nitrogen Oxide Pollution - Control
Diesel Engine Exhaust - Air Pollutants
Air Pollution Control
Pulse Energization
Wire-cylinder Reactor
Pipe-cylinder Reactor
Submitted Date: Jan-2008
Series/Report no.: G22218
Abstract: In India, with the increase in the number of industries and vehicles the environment is getting more and more polluted. More than industries it is the rapid growth of vehicles which causes serious environmental crisis in the form of air pollution and has become alarming particularly in cities. The industrial and vehicular growth cannot be neglected, as the country’s economic and social well being is largely dependent on them. But this should not come at the cost of our health and eco system. The industrial and vehicular emissions must be controlled in order to keep our air clean. Continued efforts in this direction are being taken up across the globe to investigate an efficient and economical technique. There are many air pollutants being emitted from both natural and manmade sources. The major air pollutants identified as hazardous to human health are nitrogen oxides (NOx), carbon monoxide (CO), particulate matter (PM), volatile organic compounds (VOC), and sulfur dioxides (SOx). Among these, nitrogen oxides are considered to be difficult to remove. The sources of NOx are thermal power plants, stationary and mobile diesel engines, gasturbine engine, ironore sintering plants and various other smallscale utilities. There are conventionally available technologies to remove NOx such as chemical scrubbing, catalysis etc. But these techniques are either difficult to operate or do not bring down the level of NOx to the required norms imposed by the government. The failure of conventional techniques to remove NOx to the expected limit led to the development of alternative nonconventional techniques. Prominent among these new alternative techniques is electric discharge plasma, where the gas is partially ionized and temperature of electrons is considerably higher than that of ions and background gas molecules. Diesel engines are getting popular due to their inherent merits and their number is increasing considerably. Unfortunately, the exhaust of diesel engine being complex with high oxygen content makes the existing pollution control techniques insufficient particularly with regard to removal of NOx. So there is a need for investigating better technology which can effectively abate the pollutants from diesel engine exhaust. Electric Discharge plasma is one such alternative technique which has been very successful in large volumes of flue gas cleaning and hence, its potential is being explored in the cleaning of small volumes of vehicular exhausts, in particular, diesel engine exhaust. In the present work we investigated the relative performance of different electric discharge plasma reactors, with different type of voltages like AC, DC and pulse. The reactors were evaluated for NOx removal efficiency and NO conversion. This research work is a feasibility study to find whether electric discharge plasma can be used more effectively as an alternative technology for the after treatment of diesel engine exhaust in cascade with some cheaper adsorbents, if necessary. The scope of this qualitative experimental study can briefly be summarized as below: . • To study different reactors for NO conversion and NOx removal . • To study the effect of dielectric pellets in enhancing the radical production which in turn will have a bearing on the chemical reactions . • To study the effect of different types of voltages on the cleansing process . • To propose an efficient reactor system subject to the experimental conditions studied.
URI: http://hdl.handle.net/2005/716
Appears in Collections:Electrical Engineering (ee)

Files in This Item:

File Description SizeFormat
G22218.pdf1.74 MBAdobe PDFView/Open

Items in etd@IISc are protected by copyright, with all rights reserved, unless otherwise indicated.

 

etd@IISc is a joint service of NCSI & IISc Library ||
Feedback
|| Powered by DSpace || Compliant to OAI-PMH V 2.0 and ETD-MS V 1.01