IISc Logo    Title

etd AT Indian Institute of Science >
Division of Earth and Environmental Sciences >
Civil Engineering (civil) >

Please use this identifier to cite or link to this item: http://hdl.handle.net/2005/876

Title: Effects Of Reinforcement Parameters On The Behavior Of Geosynthetic Reinforced Foundation Beds
Authors: Bhimrao, Somwanshi Amit
Advisors: Madhavi Latha, G
Keywords: Foundations (Civil Engineering)
Reinforced Soil Foundations
Geosynthetics
Sand - Properties
Planar Reinforcement
Reinforced Soil Foundation - Numerical Simulations
Geosynthetic Reinforcement
Regression Model
Reinforced Sand
Square Footings
Reinforced Foundation Beds
Submitted Date: Jan-2009
Series/Report no.: G22920
Abstract: Use of geosynthetics for reinforcing soil beds supporting shallow foundations has gained tremendous popularity in recent times. In this thesis, to study and understand the behaviour of geosynthetics reinforced soil foundations, model load tests are carried out on square footings resting on sand beds reinforced with geosynthetics. The effects of various parameters like type and tensile strength of geosynthetic material, depth of reinforced zone, spacing of reinforcement layers, width of reinforcement and form of reinforcement on the performance of square footings on reinforced sand beds are studied. Results from these tests are analyzed to understand the effect of various parameters in improving the bearing capacity and reducing the settlement of footings. An equation is developed to estimate the ultimate bearing capacity of square footings resting on geosynthetic reinforced sand beds by multiple regression analysis of the experimental data. The model loading tests on reinforced soil foundations are simulated in the numerical model using the computer program FLAC3D (Fast Lagrangian Analysis of Continua in 3D). Finally parametric studies on a full scale reinforced soil foundation are conducted. From the experimental, analytical and numerical investigations carried out in this thesis, some important conclusions are drawn regarding the effective depth of reinforced zone, optimum spacing and quantity of reinforcement layers. Relative efficiency of various forms of reinforcement is discussed. Validity of the regression and numerical models developed is verified through experimental data from present study and also for data from other researchers.
URI: http://hdl.handle.net/2005/876
Appears in Collections:Civil Engineering (civil)

Files in This Item:

File Description SizeFormat
G22920.pdf4.45 MBAdobe PDFView/Open

Items in etd@IISc are protected by copyright, with all rights reserved, unless otherwise indicated.

 

etd@IISc is a joint service of SERC & IISc Library ||
Feedback
|| Powered by DSpace || Compliant to OAI-PMH V 2.0 and ETD-MS V 1.01
Please not that the site address will change from etd.ncsi.iisc.ernet.in to etd.iisc.ernet.in